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Analysis of Condensation Polymerization Reactors. 
111. Continuous Reactors 

T. T. SZABO arid J. F. LEATHRUM,* Plastics Division, Union Cadirk 
Corporation, Bound Brook, New Jersey 

synopsis 
The kinetic model for polycondensation reactions has been derived and techniques for 

validating the model have been described in Parts I and I1 of this work. This paper is 
concerned with using the results of Part I and I1 for the analysis and design of continuous 
polycondensation reactors. 

INTRODUCTION 

When a kinetic model has been proven valid by experiments, and SUE- 
cient rate data have been obtained, then tools must be developed to use the 
model in the design of commercial reactors. This many times means devel- 
oping design criteria for continuous reactors. It is the purpose of this paper 
to develop a method for the analysis and design of continuous polycondensa- 
tion reactors. 

Parts I and I1 of this work'J should be referred to for definitions of the 
various symbols employed. 

CONTINUOUS FLOW STIRRED TANK REACTOR 

Perfect Mixing 

From the equal reactivity model and a steady-state material balance on n 
perfectly stirred reactor, the required hold-up time is given by 

where ? = T ~ P A ,  T = V / F  = (volume of the reactor)/(flow rate), Op is the 
degree of polymerization in the feed, and y is the dimensionless by-product 
concentration 4/OA. This definition is made to include the case of open 
reaction systems. 

From eq. (1) one can determine the required hold-up time if the feed 
concentration, the rate constants, and the degree of polymerizations are 
known. 
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Assuming that, thc operating variables are known, i t  would be interesting 
to derive expressions for the molecular weight dist,ributions in perfectly 
stirred reactors. An unsteady-st,ate material balance may be made for 
each endgroup, A ,  and Bi, and the sum of them, A and B. 

dA Ao-A 
- -k ,AB + kr M 4  

dt 7- 

where RiA and RF are specific reaction rates for the i-th species. 
New variables of the following form will now be defined. 
F /  = A,/A is the fraction of A endgroups with monomers in the chain; 

F F  = B J B  is the fraction of B endgroups with B monomers in the chain. 
Taking the total 

dFiA 1 dAi A ,dA  
dt A dt A2  dt (6) - - -  ~ - 

dFiB 1 dB, BidB 
dt B dt  B2 dt 

- -- _ _ - _ _  - (7) 

Equations (2)-(5) may be substituted into eqs. (6) and (7). At steady 
state, the total derivatives will be zero. 

The resulting equations may be solved for the F;s. 
derivations may be found in the Appendix. 

The details of the 

General Form for the Molecular Weight Distribution 

The form to be used for the distributions of endgroups will be the follow- 
ing: 
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where N,,  and D,, represent the contribution of each reaction to the nu- 
merator and denominator rcspcctively. Thc index, j ,  will he designated 
according to Table I. 

TABLE I 

Reaction j 

0 Feed conditions 
1 Forward reaction 
2 Reverse reaction 
3 
4 
5 

A + M ester exchange 
B + M ester exchange 
M + M ester exchange 

The index, n, denotes the number of structural units in the polymer chain. 
In  any reactor where the polymer chains are being built up, terms of j = 0 
and 1 are required. Among the four other reactions the appropriate com- 
bination must be determined from experimental data and order of magni- 
tude estimates of the reaction rate constants. 

Effect of Feed Conditions 

The contributions of the feed to the molecular weight distributions are 
derived easily. The form of Nno and D,o becomes 

NnoA = (1 - pt-l)f-'FnA 

NnOB = (a - p"-')f-lFnB 

DnOA = (1 - p*-') 

DnOB = (a - pi-' ) 

where p = degree of polymerization = 1 - @ / " A ) ,  i is the reactor number 
counting from the first, a = ratio monomers in the feed = OB/OA. 

Forward Reaction. For n odd, 
n--1/2 

A B 
NnlA = 2K?(1 - p )  ( a  - p )  FtsPl G ~ - ~ ~ + ~  

s = I  

A D,i = DniB = K?(1 - p )  (a - p )  

y is fixed by the pressure in the case of an open reactor system. 
For n even, 

n - 1  

s= 1 
N,iA = NniB = K?(1 - p )  (a - p )  C FSA FnPsB 

DnlA = K?(l - p ) 2  

D,-IB = K?(a  - P ) ~  
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Reverse Reaction. &'or 12 odd, 

N 7 L 2 A = 2 ~ f y ( l - p )  

N n 2 B = 2 7 y ( a - p )  

For n even, 
n/2 n-26+1 

Nn3" = K 3 ?  ( 1  - p )  (a - p )  [(l - k l F s B )  s =  1 + k =  c 1 FZt-] "(1 - a *  c 1 FsB)]  

+ Ks? (1  - pI2  c l i ; k A  ( 1  - Y FsA)  
n - 2/2 n--2k 

K =  1 8 -  1 
n= 1 n/2 n-2k+l 

a=  1 k =  1 
Nn3B = K B T  ( 1  - p )  ( C Y  - p )  [(I - C FsB)  + C F2t-1~ ( 1  - s =  C 1 F.8)  

n -2 /2  n-2k  + C FznB (1 - s= c 1 I.',*)] 
k =  1 
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D,gB = K3 5 (1 - p )  p + nK3 5 ( 1  - p ) 2  

DnsB = K3 t (a  - p )  p + nK35 ( 1  - p )  ( a  - p )  

where K3 = k3/k, and k3 is the specific rate constant for A + M ester ex- 
change. 

B + M Ester Exchange. The previous expressions for A + M ester 
exchange may be converted to B + M ester exchange by interchanging 
the symbol pairs A and B and ( 1  - p )  and (a - p )  and substituting K4 for 
K3 where K4 = k4/k, and k4 is the specific rate constant for B + M ester 
exchange. 

M + M Ester Exchange (Ester-Ester Interchange). For n = 1, 

N1sA = N1gB = D1SA = D1sB = 0 

For n odd # 1, 

N,gA = 2&5 (1  - p ) 2  

n - k  
NngB = 2Ks t (a - p ) 2  r%’( 1 - 5 F,”) ( 1  - 

k = l  s= 1 u= 1 F s B ) ]  

For n even, 

N,sB = N,gA 

D,sA = (n - 1) K5 t ( 1  - p )  p 

D,gB = (n - 1)Ks 5 ( a  - p ) p  

where K5 = kg/k, and k5 is the specific rate constant for M + M ester 
exchange. 

The number distribution function is now given by 

A F , ~  + B F , ~  
A + B  

F ,  = 

Each of the Ft’s may be calculated by starting with i = 1 and calculating 
each succeeding one in order. This very convenient initial value nature of 
the calculation is a direct result of the very simple form of eq. (1 )  of Part I.’ 

For a number of reactors in series, the molecular weight distribution may 
be calculated from the molecular weight distribution of the feed from the 
last previous stage. 

Well Stirred Reactor 

Now consider a continuous flow stirred tank reactor in which the distribu- 
In this tion of residence times is the same as the perfectly stirred tank. 
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case, however, there is no mixing at  the molecular scale. The yields and 
molecular weight distributions will now be found by superimposing the 
distribution of residence times upon the batch predictions. The degree of 
polymerization is given by 

where p ( t )  is the batch degree of polymerization.. 
This is simply a Laplace transform 

where the Laplace variable, s, equals 1 / ~ .  

which converges for rl/rz > 1.0. 
The molecular weight distribution in this case becomes 

where F ( n ,  t )  is the batch molecular weight distribution which is available 
from Flory3 or Case.4 

The well-stirred reactor model will give yields between the yields of batch 
and perfectly stirred reactors with the same hold-up times. It represents 
an idealization of the agitation system, but less agitation is required to meet 
the requirements of this model. For this reason the model might be quite 
useful in highly viscous systJcms such as encountered in the last stages of 
polymerization. 

CONCLUSIONS 

I n  this paper the kinetic model and results of batch experiments were 
employed to develop design criteria for continuous reactors. In  the case of 
perfectly mixed reactors, reactor size and molecular weight distribution 
may be computed directly from algebraic equations. The molecular 
weight distributions are computed by computing the fraction of each com- 
ponent in the mixture beginning with the lowest molecular weight. The 
kinetic model permits this initial value type calculation. 
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APPENDIX 

Derivation of Molecular Weight Distributions 
in a Perfectly Stirred Tank 

The molecular weight distributions may be derived from a transient 
The fractions material balance on a perfectly stirred continuous reactor. 

of each end group are determined by solving 

1 dAi F f A d A  
A dt A dt 

= o  (A-1) 

for FiA. 
exchange. 

The second term of the above equation is not affected by ester 
This leaves the first t.erm which is multiplied by A/OA to give 

T dAi = o  _ _ _  
OA dt (A-2) 

which must be solved forFiA to determine the contribution of ester exchange 
to the molecular weight distribution. Take, for instance, A + M ester 
exchange 

note furthermore than 

n= 1 n= 1 

therefore 

The A1 may be transformed into FIA 

A A2 
OA OA 

- 2 k,rFIA - ( A  + A [ )  + 2 r k3 - = 0 

The second term above contributes to the numerator 

N1aA = 2 r kSOA (1 - p ) z  = 2Z<y 7 (1 - 1))' (AM) 
where it is recalled that 

5 = k2A r 

K3 = h / L  
The first term coefficient contributes to the denominator. 

D13A = 2K3 i (1 - p )  

For dA2/dt 
(A-6) 
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dAz/dt = - k3AzM - kdM1zA + k3A 

Here the middle group terms reduce to 

m m m 

Also 

then 

- T dAz 
OA dt 

A2 A A Ai - k 3 ~  - M - k3 T - A, + k3 T - (B  - B - Az) + k 3 ~ -  
OA OA OA OA 

X ( B  - Bl) = 0 

which becomes 

- K3fp(10p)FzA - 2K3? (1 - p ) z  FzA + K3? (1 - p )  (a - p )  (1 - FIB) 

+ K3? PiA (1 - p )  ( a  - p )  (1 - FIB) = 0 

The last two terms contribute to the numerator 

N23A = Ka ? (1 - p )  (a - p )  [ ( l  - FIB) + FiA ( 1  - FIB)] (A-10) 

The coefficients of the first two terms contribute to the denominator 

Dz3A = K3 ? (1 - p) p + 2K3 f (1 - p ) z  (A-1 1) 

In the case of R I  + RI ester exchange, the following substitutions are neces- 
sary. 

m m 

m m m 

Equation (A-2) becomes 



CONDENSA'I'ION POLYMERIZA'I'ION REACTORS 569 

The Az may be transformed to FZA by dividing A1 by A 

- Ks .T FzA (1 - p )  p + K5 .i (1 - p )  ( a  - p )  (1 - FIA) (1 - FiB)  = 0 

The second terms contributes to the numerator 

NzsA = K5 .?. (1 - p )  ( a  - p )  (1 - FiA) (1 - FIB) (A-14) 

The coefficient of FZA contributes to the denominator 

D25A = K5 .T (1 - p ) p  (A-15) 

If eq. (A-1) is multiplied by rA/OA the following form results 

r .dA 
OA dt OAo dt 

- - - P i  - = O  r d A i  (A-16) 

The contributions of the flow rates to the material balances is 
i - 1  i 

d A ,  A ,  - A ,  ~- - 
dt 7 

i-1 z 

dA A - A  
dt 7 
_ - _ _ _  - 

Substituting these into eq. (A-16) gives 

i - 1  i I - 1  i 

noting that FnA iA  = 'A, ,  this reduces to 

The first term contributes to the numerator 

N,oA = (1 - F,A (A-17) 

The coefficient of the second term contributes to the denominator 

DnOA = (1 - i-') (A-18) 

The derivations presented here may all be performed for B type end- 
groups also. Equation (A-1) then becomes 

1 d B i  F F d B  
B dt B dtL 

= o  (A-19) 
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